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Coxeter classified all discrete isometry groups generated by reflections that act
on a Euclidean space or on a sphere of an arbitrary dimension (see [1]). His funda-
mental work became classical long ago. Lobachevsky spaces (classical hyperbolic
spaces) are as symmetric as Euclidean spaces and spheres. However, discrete isom-
etry groups generated by reflections, with fundamental polytopes of finite volume
(see [2]), are not classified for Lobachevsky spaces. In 1985, M.N. Prokhorov and
myself proved the following theorem.

Theorem 0.1 [3, 4] In a Lobachevsky space of dimension > 995 there are
no discrete isometry groups generated by reflections, with fundamental polytope of
finite volume.

For groups with compact fundamental polytopes, an analogous result had been
previously obtained by E.B. Vinberg ([5, 6]). According to his theorem, such groups
do not exist in Lobachevsky spaces of dimensions > 29. (Most likely, it is possi-
ble to reduce the number 29 considerably, all the more so the number 995. But
nobody knows how to do that). The result of E.B. Vinberg came after the works
of V.V. Nikulin ([7, 8]) who worked out the case of arithmetic groups. Nikulin
estimated the average number of l-dimensional faces on k-dimensional faces of sim-
ple n-dimensional polytopes (the definition of a simple polytope is given below in
this section) and applied his estimate to groups generated by reflections. In fact,
a compact fundamental polytope of such a group is always simple, and Nikulin’s
estimate is applicable to it. Prokhorov and myself followed Nikulin’s plan. We
performed non-overlapping parts of the necessary work for the realization of this
plan. Namely, Prokhorov proved the following theorem.

Theorem 0.2 [4] In a Lobachevsky space of dimension > 995, there are no
discrete groups generated by reflections, with fundamental polytope of finite volume,
satisfying Nikulin’s estimate.

1991 Mathematics Subject Classification. Primary 14M25; Secondary 52B05, 14F43.
Partially supported by OGP grant 0156833 (Canada).

c⃝0000 American Mathematical Society

1



2 Askold Khovanskii

It is known that if a polytope of finite volume is the fundamental polytope
of a group generated by reflections in a Lobachevsky space, then this polytope
is always almost simple, and, therefore, is simple at the edges (the definitions of
almost simple polytopes and polytopes simple at the edges are given below in this
section). I proved the following theorem.

Theorem 0.3 [3] Nikulin’s estimate holds for polytopes simple at the edges.

Corollary 0.4 [3] Nikulin’s estimate holds for almost simple polytopes.

Theorem 0.1 follows from Theorem 0.2 and Corollary 0.4. Nikulin proved his
estimate using a very hard theorem — the theorem on the h-vector — a necessary
and sufficient condition on a collection of integers to be the h-vector of a simple
polytope (a variant of Nikulin’s proof is given in Section 2). R. Stanley’s proof
of the necessity part of the theorem on the h-vector uses nontrivial results from
algebraic geometry (see Section 3 for his proof). During the time passed from [3],
several elementary proofs of the theorem on the h-vector were found (see [9], [10]).
But they are also far from being simple.

In [3], I found a simple elementary proof of the statement from Corollary 0.4
(see the remark in Section 9 after Theorem 9.1). This statement is necessary for
the proof of Theorem 0.1. It contains Nikulin’s original estimate as a partial case.
But I failed to find a simple proof of Theorem 0.3 — my proof of it is based on the
theorem on the h-vector.

The Klein model of a Lobachevsky space is the interior U of the unit ball in a
Euclidean space. Polytopes in this model are intersections of Euclidean polytopes
with the region U . If a polytope is bounded in the Lobachevsky space, then in the
Klein model it lies entirely in the region U . If a polytope in the Lobachevsky space
has a finite volume, then in the Klein model it can intersect the horizon ∂U by
vertices only. Recall the definition of a simple polytope and of a polytope simple at
the edges. These definitions play a central role in this article.

Definition 1 A convex n-dimensional polytope is said to be simple, if its every
vertex is incident to exactly n facets.

A neighborhood of any vertex of a simple n-dimensional polytope can be trans-
formed into a neighborhood of the origin in the positive n-dimensional octant (R+)n

by an affine transformation. Hence exactly n edges meet at each vertex of a simple
n-dimensional polytope.

Definition 2 A convex n-dimensional polytope is said to be simple at the
edges, if its every edge is incident to exactly (n− 1) facets.

Let us also give the definition of an almost simple polytope.

Definition 3 A convex n-dimensional polytope is said to be almost simple, if
it looks like the cone over a product of simplices at its every vertex.

It is clear that each simple polytope is almost simple, and each almost simple
polytope is simple at the edges. At its every vertex, a simple n-dimensional polytope
looks like the cone over an (n − 1)-dimensional simplex. At its every vertex, an
n-dimensional polytope simple at the edges looks like the cone over an (n − 1)-
dimensional simple polytope.

While preparing my talk for the “Coxeter’s legacy” conference, I found out that
my article [3], which had been written 19 years ago, is hard to read. The reason is
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that the journal “Functional Analysis and its Applications”, where I published my
article, had a restricted space. That is why I had to abridge the article considerably.
Luckily, I found an unabridged variant of the article, which helped me a lot in
preparation of my talk and in writing this article.

My student V.A. Timorin found another proof of Theorem 0.3 (see [11]). His
arguments are parallel to mine for the most part, but they do not at all use the
combinatorics of sections of polytopes, which my proof relies upon. On one hand,
this shortens the proof essentially. On the other hand, the facts from article [3]
related to combinatorics of sections of polytopes, are interesting by themselves.
They explain the geometric meaning of Nikulin’s estimate.

This article is devoted to combinatorics of sections of polytopes and to a gen-
eralization of Nikulin’s estimate. It is a considerably expanded and revised version
of article [3].

I am grateful to the organizers of the conference for the invitation to give a
talk, to G. Kalai and V.A. Timorin for useful discussions, to T.V. Belokrinitskaia
for the help with the preparation of the Russian version of this article, and and to
V.A. Timorin for the help with the English translation.

1 Statements of Nikulin’s theorem and of the theorem on the h-vector

Nikulin’s estimate deals with the average number of l-dimensional faces on k-
dimensional faces of an n-dimensional polytope. This average number is defined as
follows. First, for every k-dimensional face (k-face for short) of the polytope, we
compute the number of all l-faces on it. Then we take the arithmetic mean of these
numbers over all k-faces of the polytope. By the total number of l-faces on k-faces
we mean the number of pairs consisting of a k-face and an l-face of it. Thus the
average number of l-faces on k-faces equals to the total number of l-faces on k-faces
divided by the number of k-faces.

Let us start with 3-dimensional case. The following classical theorem is well
known.

Theorem 1.1 The average number of edges on faces of a convex 3-polytope is
strictly less than 6.

Before proving this theorem, let us discuss the simplest example.

Example 1 Consider a prism whose base is a convex n-gon. The upper and
the lower bases of the prism contain n edges each. Its side faces are n quadrangles.
Hence the total number of edges on faces of the prism is n+n+4n = 6n. The prism
has (n+2) faces. Hence the average number of edges on its faces is 6n/(n+2) < 6.

The example given above shows that the estimate from the theorem can not
be improved, i.e. that the number 6 in its statement can not be replaced with a
smaller number.

Proposition 1.2 The estimate from the theorem holds for simple 3-polytopes.

Proof Denote by f0, f1 and f2 the number of vertices, edges and faces of the
polytope, respectively. We have

f0 − f1 + f2 = 2,

3f0 = 2f1.
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The first of these identities is the Euler formula. The second identity follows from
the fact that exactly 3 edges meet at each vertex of the polytope. ¿From these
equalities we obtain that 2f1/f2 = 6 − 12/f2. The claim is thus proved, since the
total number of edges on faces of the polytope equals to 2f1, and the number f2 of
its faces is positive.

Theorem 1.1 can be proved in the same way as Proposition 1.2. We only need
to replace the equality 3f0 = 2f1 with the inequality 3f0 ≤ 2f1. The latter means
that at least 3 edges meet at each vertex of the polytope. Using the Euler formula,
we obtain the inequality 2f1/f2 ≤ 6 − 12/f2 that implies the theorem. Nikulin
generalized Proposition 1.2 to the multidimensional case. Namely, he proved the
following theorem.

Nikulin’s theorem The average number of l-dimensional faces on k-dimensional
faces of a simple n-dimensional polytope is strictly less than(

n− l

n− k

)(
[n/2]

l

)
+
(
[(n+1)/2]

l

)(
[n/2]
k

)
+
(
[(n+1)/2]

k

)
for 0 ≤ l < k ≤ (n+ 1)/2, 1 < k.

According to Theorem 0.3, Nikulin’s estimate holds for polytopes simple at the
edges. Theorem 0.3 includes Theorem 1.1, since any convex 3-polytope is simple at
the edges. If in the proof of Theorem 0.3 we confine ourselves with the 3-dimensional
case, then we obtain a proof of Theorem 1.1 not using the Euler formula (see Section
10). The following statement is a supplement to Nikulin’s theorem:

Proposition 1.3 1) For each triple of integers l, k, n such that 0 ≤ l < k,
(n + 1)/2 < k ≤ n, 1 < n, the average number of l-dimensional faces on k-
dimensional faces of a simple n-polytope can be arbitrarily large.

2) For each triple of integers l, k, n satisfying the conditions of Nikulin’s theo-
rem, his estimate is best possible.

Here are the simplest examples.

Example 2 Examples For the triple l = 0, k = n = 2, the first part of the
claim is obvious, since there exist convex polygons with any number of vertices.
For the triple l = 1, k = 2, n = 3, Nikulin’s estimate gives the number 6. As the
example discussed above shows, this estimate is best possible.

Nikulin’s estimate is rather cumbersome. Below, its geometric meaning is dis-
cussed (see Section 6). For now, let me just give the following remark.

Remark 1 For fixed integers l and k, as n → ∞, Nikulin’s estimate tends
to the number 2k−l

(
k
l

)
, which is equal to the number of l-dimensional faces of the

k-dimensional cube. Since the n-dimensional cube is a simple polytope for every n,
and its k-dimensional faces are cubes, Nikulin’s estimate is asymptotically exact.

The proof of Nikulin’s theorem is based on the theory of simple polytopes, which
is closely related to the theory of toric varieties. Recall the classical description of
the f -vectors of simple polytopes. For a convex n-dimensional polytope ∆, the f -
vector is the integer vector (f0, . . . , fn), whose component fi equals to the number
of i-faces of the polytope ∆ for each 0 ≤ i ≤ n (in particular, fn = 1). The
polynomial f(t) = f0+f1t+ · · ·+fntn is called the f -polynomial of the polytope ∆.
The polynomial h(t) = f(t− 1) is called the h-polynomial of the polytope ∆. The
vector (h0, . . . , hn), whose components are the coefficients of the polynomial h (i.e.
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h(t) = h0+h1t+ · · ·+hntn), is called the h-vector of the polytope ∆. The identity
f(t) = h(t+ 1) shows that the h-vector determines the f -vector, Namely, for every

0 ≤ m ≤ n, we have fm =
∑

0≤i≤n

(
i
m

)
hi.

What integer vectors are the h-vectors of simple n-dimensional polytopes? A
complete answer to this question is given by the following remarkable theorem.

Theorem on the h-vector (McMullen, Stanley, Billera, Lee) For every
simple n-dimensional polytope, the components h0, . . . , hn of its h-vector satisfy the
following conditions:

1. (Dehn–Sommerville duality) For each 0 ≤ i ≤ n, we have

hi = hn−i;

2. All components of the h-vector are nonnegative, and the numbers h0 and hn
are 1;

3. The h-vector is unimodal, i.e. 1 = h0 ≤ · · · ≤ h[n/2];
4. The sequence of numbers h1−h0, h2−h1, . . . , h[n/2]−h[n/2]−1 has a bounded

rate of growth: for i = 0, . . . , [n/2]− 1, we have the inequalities hi+1 − hi <
Qi(hi −hi−1), where Qi are some explicit functions of an integer argument.
Functions Qi are not simple, but we will not need their explicit form.

For each integer vector h = (h0, . . . , hn) satisfying conditions 1)–4), there exists a
simple n-dimensional polytope, whose h-vector is equal to h.

The Dehn–Sommerville duality was discovered in the beginning of the last cen-
tury (see [12]). In its entire form, the theorem on the h-vector was first conjectured
by McMullen (see [13]). Stanley proved the necessity of McMullen’s conditions on
the h-vector (see [14]). Stanley’s proof is based on a nontrivial technique from
algebraic geometry (see [14] and Section 3). For every integer vector h satisfying
conditions 1)–4), Billera and Lee gave an example of a simple polytope, whose h-
vector equals to h. Thus they concluded the proof of the theorem on the h-vector
(see [15]).

Nikulin’s estimate is a direct corollary from the theorem on the h-vector (see
Section 2). In fact, to deduce this estimate, we only need parts 1) and 2) of the
theorem on the h-vector, together with a couple of elementary lemmas given in
Section 2.

Parts 1) and 2) of the theorem on the h-vector can be easily proved using
Morse theoretic type argument. Namely, one can use a generic linear function
on the polytope (see Section 4). Thus one obtains a simple proof of Nikulin’s
estimate. Similar arguments can be also employed to prove a generalization of
Nikulin’s estimate necessary for the Lobachevsky geometry. But this generalization
makes use of the theorem on the h-vector in corpore (to be more precise, we will
need part 3) of this theorem, which is the most difficult).

A simple argument based on a generic linear function on the polytope came to
my mind when I was thinking about Stanley’s proof. In Section 3, we will discuss
the idea of Stanley’s proof.

2 Derivation of Nikulin’s estimate from the theorem on the h-vector

To deduce Nikulin’s estimate from the theorem on the h-vector, we will need
Lemmas 2.1 and 2.4. They are quite elementary. Lemma 2.1 is very intuitive. The
proof of Lemma 2.4 is simple, but a little cumbersome. It is based on Claims 2.3
and 2.4
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Let A = (A1, . . . , Am) and B = (B1, . . . , Bm) be fixed vectors from Rm, and
suppose that all components of the vector A are strictly positive. Consider the set
Ω ⊂ Rm defined by the relations α ∈ Ω ⇔ α1 ≥ 0, . . . , αm ≥ 0 and α1+· · ·+αm > 0.
Denote by ⟨x, y⟩ the standard inner product of vectors x, y ∈ Rm.

Lemma 2.1 The maximum C of the function F (α) = ⟨α,B⟩
⟨α,A⟩ on the region Ω,

α ∈ Ω, is equal to

max
1≤i≤m

Bi

Ai
.

Furthermore, the maximum C is attained on any vector α = (α1, . . . , αm) such that

its j-th components αj vanish for all indices j such that
Aj

Bj
< C.

Proof Let Ω1 be a subset of Ω defined by the condition α1 + · · · + αm = 1.
Multiplying the vector α by a positive number, we can arrange that α ∈ Ω1. With
the vector α, associate the point (⟨α,A⟩, ⟨α,B⟩) in the plane with coordinates a,
b. The image of the set Ω1 under this correspondence coincides with the convex
polygon ∆ that is the convex hull of the points (Ai, Bi), i = 1, . . . ,m. The polygon
∆ lies in the right half-plane a > 0. The function b

a on this half-plane is contin-
uous, its level sets are rays beginning at 0. Furthermore, this function depends
monotonely on the angle between this ray and the positive ray on the a-axis. The
lemma is now geometrically evident.

Proposition 2.2 1) Let A1, A2 be positive numbers, and B1, B2, µ1, µ2 non-
negative numbers. Suppose that B1

A1
< B2

A2
, 0 < µ1 + µ2, µ1 ≤ µ2. Then

B1 +B2

A1 +A2
≤ µ1B1 + µ2B2

µ1A1 + µ2A2
.

2) Assume additionally that B1 < B2 and that there are numbers λ1 and λ2
such that µ1 + µ2 ≤ λ1 + λ2 and λ1 < µ1 < µ2 < λ2. Then

B1 +B2

A1 +A2
<
λ1B1 + λ2B2

µ1A1 + µ2A2
.

Proof Part 1) of Proposition 2.2 follows from Lemma 2.1. Indeed, according
to Lemma 2.1, B1+B2

A1+A2
< B2

A2
. By the same Lemma 2.1,

B1 +B2

A1 +A2
≤ µ1(B1 +B2) + (µ2 − µ1)B2

µ1(A1 +A2) + (µ2 − µ1)A2
=
µ1B1 + µ2B2

µ1A1 + µ2A2
.

Part 2) follows from part 1). Indeed, since λ2 − µ2 ≥ µ1 − λ1 > 0, we have
(λ2 −µ2)B2 ≥ (µ1 − λ1)B2 > (µ1 − λ1)B1. Hence λ1B1 + λ2B2 > µ1B1 +µ2B2. It
remains to use the inequality from part 1).

For i and j such that 0 ≤ i ≤ n and 0 ≤ j ≤ (n + 1)/2, denote by φ(j, i) the
number (

i
j

)
+

(
n−i
j

)(
[n/2]
j

)
+

(
[(n+1)/2]

j

) .
Proposition 2.3 1) The numbers φ(0, i), φ(1, i) and the numbers φ(j, [n/2]),

φ(j, [(n+ 1)/2]) equal to 1;
2) We have φ(j, i) = φ(j, n− i);
3) For a fixed i such that 0 ≤ i < [n/2], the numbers φ(j, i) increase strictly as

j runs from 1 to [(n+ 1)/2].
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Parts 1) and 2) are obvious. Let us prove part 3). We need to verify that for
0 ≤ i < [n/2] and 1 ≤ j ≤ (n− 1)/2, we have the inequalities φ(j, i) < φ(j + 1, i).

This is easy to do using part 2) of Proposition 2.2. It suffices to set B1 =
(
i
j

)
,

B2 =
(
n−i
j

)
, A1 =

(
[n/2]
j

)
, A2 =

(
[(n+1)/2]

j

)
. The following inequality holds:(

i
j

)(
[n/2]
j

) < (
n−i
j

)(
[(n+1)/2]

j

) .
Indeed, the left hand side of this inequality is less than 1, but the right hand side
is greater than 1. Furthermore, we have

(j + 1)
(

i
j+1

)
= λ1

(
i
j

)
, where λ1 = min(i− j, 0);

(j + 1)
(
n−i
j+1

)
= λ2

(
n−i
j

)
, where λ2 = n− i− j;

(j + 1)
(
[n/2]
j+1

)
= µ1

(
[n/2]
j

)
, where µ1 = [n/2]− j;

(j + 1)
(
[(n+1)/2]

j+1

)
= µ2

(
[(n+1)/2]

j

)
, where µ2 = [(n+ 1)/2]− j.

The conditions of part 2) of Proposition 2.2 are satisfied, since λ1 + λ2 ≥
(n − 2j) = µ1 + µ2 and (n − i − j) > [(n + 1)/2] − j ≥ [n/2] − j > min(i − j, 0).
Using part 2) of Proposition 2.2, we obtain the desired inequality.

Lemma 2.4 Let 0 ≤ l < k ≤ (n + 1)/2. For each 0 ≤ i ≤ n, set Ai =(
i
k

)
+
(
n−i
k

)
, Bi =

(
i
l

)
+
(
n−i
l

)
. Then

max
i

Bi

Ai
=

(
[n/2]

l

)
+
(
[(n+1)/2]

l

)(
[n/2]
k

)
+
(
[(n+1)/2]

k

) .
Proof It suffices to verify that for each 0 ≤ i ≤ n/2 and l, k subject to

conditions of the lemma, we have

Bi

Ai
≤

(
[n/2]

l

)
+
(
[(n+1)/2]

l

)(
[n/2]
k

)
+
(
[(n+1)/2]

k

) .
This inequality is equivalent to the inequality φ(l, i) < φ(k, i) from part 3) of
Proposition 2.3.

Let us turn to the proof of Nikulin’s estimate.

Proof of Nikulin’s estimate. The estimate of the average number of l-faces
on k-faces of a simple n-polytope follows immediately from the theorem on the
h-vector. Indeed, firstly, each l-face of a simple n-polytope is contained in exactly(
n−l
n−k

)
k-dimensional faces of the polytope. Secondly, the number fm of m-faces of a

simple polytope is determined by its h-vector for every m, namely, fm =
∑
i

(
i
m

)
hi.

The desired average number equals to(
n− l

n− k

)∑
i

(
i
l

)
hi∑

i

(
i
k

)
hi
.

By the Dehn–Sommerville duality, this number equals to

(
n− l

n− k

) ∑
0≤i≤n/2

(
(
i
l

)
+
(
n−i
l

)
)h̃i∑

0≤i≤n/2

(
(
i
k

)
+
(
n−i
k

)
)h̃i

, (1)
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where h̃i = hi for 0 ≤ i < n/2 and h̃[n/2] =
1
2h[n/2] for even n. Now apply Lemma

2.1 for m = 1 + [n/2], Ai =
(
i−1
k

)
+

(
n−i+1

k

)
, Bi =

(
i−1
l

)
+

(
n−i+1

l

)
and αi = h̃i−1

(Lemma 2.1 is applicable, since according to part 2) of the theorem on the h-vector,
the numbers h0, . . . , h[n/2] are nonnegative, and their sum is positive). According
to Lemma 2.4, the maximum C of the ratio Ai/Bi is attained for i − 1 = [n/2].
According to Lemma 2.1, the value (1) is strictly less than C, since h0 > 0. Nikulin’s
estimate is proved.

Remark 2 The proof of Nikulin’s estimate made use of only parts 1) and 2)
of the theorem on the h-vector of a simple polytope.

The remark motivates the following plan: try to find a simpler proof for the
symmetry of the h-vector and for the non-negativity of its components. This proof
should be simpler than a complete proof of the theorem on the h-vector. This would
allow to simplify the proof of Nikulin’s estimate, and possibly this would allow to
generalize it.

Proof of Proposition 1.3 There exists a sequence ∆N of simple n-dimensional
polytopes such that the h-vector components hNi of these polytopes have the fol-
lowing property: for any i < [n/2], the limit lim

N→∞
hNi /h

N
[n/2] is equal to zero. It

suffices to define ∆N as the polytope dual to an n-dimensional cyclic polytope with
N vertices. From formula (1) for the average number of l-faces on k-faces of simple
n-polytopes, it follows that the sequence ∆N provides an example for both parts
of Proposition 1.3.

3 The theorem on the h-vector and Morse theory

The proof of the necessity of conditions on the h-vector of a simple polytope
is based on the theory of Newton polytopes, which relates geometry of polytopes
with algebraic geometry of toric varieties.

Let ∆ be a convex integer polytope in Rn, i.e. the vertices of the polytope
belong to the lattice Zn. With each integer point m ∈ Zn, we can associate the
monomial χm : (C∗)n → C defined by the formula χm(z1, . . . , zn) = zm1

1 . . . zmn
n .

Denote by A the finite set A = ∆
∩
Zn of integer points. The Veronese map

V∆ : (C∗)n → CPN−1, where N is the number of points in the set A, is defined as
the map taking each point z ∈ (C∗)n to the point with homogeneous coordinates
[χm1(z) : · · · : χmN (z)], where m1, . . . ,mN are the points of the set A taken in
an arbitrary order (the Veronese map is defined up to a permutation of the set
A, however, the property of this map we are interested in does not depend on the
choice of the ordering).

The toric varietyM∆ is the normalized projective closure of the image V∆((C∗)n)
of the group (C∗)n under the Veronese map (if the polytope ∆ is “not too small”,
then the projective closure is automatically normal and so it does not need to be
normalized). The natural action of the group (C∗)n extends to M∆. With respect
to of this action, M∆ splits into a finite number of orbits.

If the polytope ∆ is simple, then the algebraic variety M∆ is so called quasi-
smooth variety (i.e. an orbifold). Quasi-smooth varieties possess many properties of
smooth algebraic varieties. In particular, the main results of Hodge theory persist
for these varieties. In the sequel, in our heuristic arguments, we will assume that
M∆ is a smooth manifold.
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Stanley’s proof of the necessary conditions on the h-vector is based on the
following fact. It turns out that the number hi of a simple integer polytope ∆
coincides with the 2i-th Betti number of the manifold M∆. After this observation,
all necessary conditions on the h-vector of a simple integer polytope ∆ follow from
the theory of toric varieties. Namely: the non-negativity of the numbers hi becomes
obvious, the Dehn–Sommerville duality follows from Poincaré duality dimHi =
dimH2n−i. The unimodality of the numbers hi follows from the hard Lefschetz
theorem, the inequalities hi+1 − hi < Qi(hi − hi−1) follow from the fact that the
cohomology ring of the manifoldM∆ is generated by the elements of the vector space
H2(M∆). (The function Qi appears in the Macaulay theorem from commutative
algebra (see [16]) describing the Hilbert functions of the quotients of the polynomial
ring in several variables.)

The necessary conditions on the h-vector for simple but non-integer polytopes
can be easily reduced to the integer case. To perform this reduction, one can do a
small perturbation of the facets of the polytope to make them rational. Then all
vertices of the polytope become rational as well, and the combinatorial type of the
polytope remains unchanged, since the original polytope was simple. After that,
we can make all vertices integer by a suitable dilation of the polytope (multiplying
by the common denominator of all vertices).

As we have seen, to prove Nikulin’s estimate, it suffices to use only the positivity
of the numbers hi and their symmetry hi = hn−i. Positivity of Betti numbers of
the manifold M∆ and Poincaré duality are responsible for these properties. Thus
we use neither the existence of the ring structure on the cohomology space of M∆,
nor the hard Lefschetz theorem.

Morse theory helps frequently to compute Betti numbers. One of the simplest
proofs of Poincaré duality is also based on this theory. Hence it is natural to try to
use Morse theory for a proof of parts 1) and 2) of the theorem on the h-vector. To
this end, we need to consider a simple enough function onM∆. To construct such a
function, we can use the moment map (see [17]). The moment map M :M∆ → Rn

has the following property. First, it takes the manifold M∆ to the polytope ∆.
Second, it establishes a one-to-one correspondence between the orbits of the group
(C∗)n inM∆ and the faces of the polytope ∆. Namely, each orbit of (real) dimension
2i is mapped by the moment map to the interior of the corresponding i-dimensional
face of the polytope.

A linear function on the polytope is said to be generic, if on no edge of the
polytope does it restrict to a constant.

Definition 4 The index of a generic linear function at a vertex of a simple
n-dimensional polytope is the number of edges containing this vertex and such that
the function decreases along them (in this case, the function increases along the
(n− i) remaining edges containing the vertex of index i).

It is easy to verify the following claim.

Proposition 3.1 Let L be a generic linear function on the polytope ∆. Then
the function L ◦M : M∆ → R on the manifold M∆ is a Morse function, and its
critical points are exactly zero-dimensional orbits of M∆. The Morse index of a
critical point A ∈M∆ equals to twice the index of the vertex M(A) of the polytope
∆ with respect to the linear function L.
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The connection between the Morse index of the function L ◦M at the point
A (a zero-dimensional orbit of M∆) and the index of the linear function L at the
vertex M(A) of the polytope ∆, admits the following explanation. Let the index of
the function L at the vertex M(A) be equal to i. By definition, the vertex M(A)
must belong to a face Γ1 of dimension i and to a face Γ2 of dimension (n− i) such
that the maximum (respectively, minimum) of the function L on Γ1 (respectively,
on Γ2) is attained at M(A). The pre-images of the faces Γ1 and Γ2 under the
moment map M are 2i-dimensional and 2(n− i)-dimensional submanifolds of M∆,
respectively, such that the function L ◦M restricted to these submanifolds attains
the maximum (respectively, the minimum) at the point A.

The existence of such submanifolds shows that the Morse index of the point
A equals to 2i. Thus the function L ◦M on M∆ has critical points of even in-
dices only. Hence all odd Betti numbers of the manifold M∆ are zero, and the
number dimH2i(M∆) is equal to the number of vertices of the polytope ∆, where
the function L has index i. However, as we have mentioned before, the number
dimH2i(M∆) equals to hi. Hence the following theorem must be true, whose state-
ment is absolutely elementary (it involves neither algebraic geometry nor topology).

Theorem 3.2 For any generic linear function L on a simple polytope ∆, the
number hi(L) of vertices of the polytope ∆, where the index of the function L is i,
does not depend on the function L and coincides with the number hi of the polytope
∆.

This theorem has a very simple elementary proof, which is given in the next
section.

Remark 3 The elementary proof of Theorem 3.2, together with Proposition
3.1, gives the simplest computation of Betti numbers for the manifold M∆: all odd
Betti numbers are zero, and dimH2i(M∆) = hi, where hi is the i-th component of
the h-vector of the polytope ∆ for 0 ≤ i ≤ n.

Remark 4 It turned out that Theorem 3.2 and its elementary proof from
the next section had been known (see [18]) before the article [3], and some close
arguments were used even earlier (see [19],[20]). However, neither the connection of
Theorem 3.2 with the theory of toric varieties and Morse theory, nor the elementary
deduction of Nikulin’s estimate from Theorem 3.2 (see Corollary 4.3 and Section
5) had been known.

4 Generic linear function on a simple polytope0

Let us give an elementary proof of Theorem 3.2 and discuss its geometric corol-
laries.

Proof of Theorem 3.2 Consider the set of faces of a simple n-dimensional
polytope ∆ (we mean the set of faces of all dimensions, including vertices, as well as
the polytope ∆ itself). Let us map this set into the set of vertices of the polytope.
To each face, we assign the vertex, where the restriction of L to this face attains

0Linear functions on general convex polytopes, and, in particular, the problem of maximizing

such functions, are studied in linear programming. Linear programming has a substantial practical
value. Its creator, a distinguished mathematician and economist L.V. Kantorovich (1912–1986),
was awarded the Nobel prize in Economics, largely for his classical works on linear programming.
In the last years of his life, Leonid Vital’evich was doing Economics, but he preserved a live interest

to mathematics. He had read the article [3] and was very enthusiastic about it.
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the maximum. It is clear that the pre-image of a vertex A under this map contains
exactly

(
i
k

)
faces of dimension k, where i is the index of the function L at the vertex

A. Each k-dimensional face belongs to the pre-image of some vertex, hence for each
k, 0 ≤ k ≤ n, we obtain the equality fk =

∑
i

(
i
k

)
hi(L). The collection of all these

equalities is equivalent to the identities hi = hi(L), which prove the theorem.
Indeed, the equalities we obtained mean that the polynomial∑

0≤i≤n

hi(L)(t+ 1)i

coincides with the polynomial ∑
0≤i≤n

fit
i.

But, by definition, the polynomial
∑

0≤i≤n

hi(t + 1)i also has this property. Hence

hi = hi(L), as desired.

Corollary 4.1 For every n-dimensional simple polytope, all numbers hi are
non-negative for 0 ≤ i ≤ n, and the numbers h0 and hn are equal to 1.

Indeed, the number of vertices of index i is nonnegative, and every generic linear
function on the polytope has exactly one minimum and exactly one maximum.

Corollary 4.2 For every n-dimensional simple polytope, we have the Dehn–
Sommerville duality, i.e. hi = hn−i.

Indeed, for any generic linear function L, according to Theorem 3.2, we have
hi = hi(L). For the computation of the numbers hn−i, we can use the function
−L. According to Theorem 3.2, we have hn−i = hn−i(−L). ¿From the definition
of index we see that the numbers hi(L) and hn−i(−L) are equal. Corollary 4.2 is
thus proved.

Corollary 4.3 The estimate from Nikulin’s theorem holds.

Indeed, the proof of Nikulin’s theorem given in Section 2 uses parts 1) and 2)
of the theorem on the h-vector together with the elementary lemma from Section
2. Corollaries 4.1 and 4.2 prove parts 1) and 2) of the theorem on the h-vector.
Hence we obtain a simple elementary proof of Nikulin’s estimate. In Section 5, we
will rewrite this proof separately, without using the notion of the h-vector.

Let us now discuss other corollaries of Theorem 3.2. Corollary 4.1 can be easily
strengthened. The following holds:

Corollary 4.4 Under the assumptions of Corollary 4.1, all the numbers hi are
strictly positive.

Proof For any fixed vertex of the polytope, we can choose a linear function L
so that the index of the function L at this vertex is any given number from 0 to n.
But according to the theorem, the numbers hi(L) do not depend on the choice of
L and are equal to hi, which proves Corollary 4.4.

Corollary 4.5 Consider an arbitrary n-dimensional simple polytope and an
arbitrary affine hyperplane containing no vertices of the polytope. Under these
conditions, there exists a face of the polytope of dimension [n/2] that is disjoint
from the hyperplane.
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Proof Perturbing the affine hyperplane slightly, if necessary, we can arrange
that it is a level hypersurface L = c of a linear function L generic with respect to
the polytope. According to the proof of Corollary 4.4, there exists a vertex A such
that the index of the function L at it equals to [n/2]. There exists an [n/2]-face
Γ1 of the polytope such that the maximum of the function L restricted to this face
is attained at the vertex A, and there exists (n− [n/2])-dimensional face Γ2 of the
polytope such that the minimum of the function L restricted to this face is attained
at the vertex A. If L(A) < c, then the hyperplane L = c is disjoint from the face
Γ1; if L(A) > c, then the hyperplane L = c is disjoint from the face Γ2.

In Sections 7 and 8, we will generalize Corollary 4.5 and give an estimate for
the number and the ratio of the faces of different dimensions disjoint from a generic
hyperplane section.

5 An elementary proof of Nikulin’s estimate

Let us rewrite the proof of Nikulin’s inequalities from Corollary 4.3 without
using the notion of the h-vector.

Let ∆ be a simple n-dimensional polytope, let l and k be integers satisfying
the inequalities 0 ≤ l < k ≤ (n+ 1)/2, and let m be the number of vertices of the
polytope ∆. Denote by V1, . . . , Vm the vertices of this polytope taken in any order.

Fix a generic linear function L on the polytope ∆. To each face of dimension
j, where j is any nonnegative integer not exceeding n, assign the vertex where the
function L restricted to the face attains its maximum. We obtain the equality

fj =
∑

1≤i≤m

(
ind(Vi)

j

)
,

where ind(Vi) is the index of the function L at the vertex Vi. Analogously, to any
face, assign the vertex where L attains the minimum. Then we obtain the equality

fj =
∑

1≤i≤m

(
n− ind(Vi)

j

)
.

Therefore, we have

2fj =
∑

0≤i≤m

(
ind(Vi)

j

)
+

(
n− ind(Vi)

j

)
.

Let us take into account that each l-dimensional face of a simple n-dimensional
polytope is contained exactly in

(
n−l
n−k

)
its k-dimensional faces. We obtain that the

average number of l-dimensional faces on k-dimensional faces of the polytope ∆
equals to (

n− l

n− k

) ∑
1≤i≤m

(
(
ind(Vi)

l

)
+
(
n−ind(Vi)

l

)
)∑

1≤i≤m

(
(
ind(Vi)

k

)
+
(
n−ind(Vi)

k

)
)
.

Set

Ai =

(
ind(Vi)

k

)
+

(
n− ind(Vi)

k

)
, Bi =

(
ind(Vi)

l

)
+

(
n− ind(Vi)

l

)
.
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Using Lemma 2.4 and Corollary 4.4, by which among the vertices of the polytope
there is a vertex Vj such that ind(Vj) = [n/2], we obtain that

max
i

Bi

Ai
=

(
[n/2]

l

)
+
(
[(n+1)/2]

l

)(
[n/2]
k

)
+
(
[(n+1)/2]

k

) .
Using Lemma 2.1 for the number m being the number of vertices of the polytope
∆, for the numbers Ai and Bi introduced above and for αi ≡ 1, we obtain a proof
of Nikulin’s theorem. We only need to notice that for 1 < k, the average number of
faces under the estimate is strictly less than max

i

Bi

Ai
, since among the vertices of the

polytope there exist points of maximum and points of minimum of the function L,
at which the corresponding ratio is strictly less than the maximal one. The proof
of Nikulin’s inequalities is completed.

6 Sections of a simplex and a geometric meaning of Nikulin’s estimates

In this Section, we will need several simple formulas concerning the combina-
torics of hyperplane sections of a simplex. First we present this formulas and show
that they play a certain role in Nikulin’s estimate. After that, we discuss a plan of
a proof of a certain generalization of Nikulin’s estimate.

Consider a section of an (n − 1)-dimensional simplex by an affine hyperplane
L = c not passing through its vertices. Suppose that i vertices of the simplex lie
on one side of the hyperplane, and (n− i) vertices lie on the other side, where i is
any number such that 0 ≤ i ≤ n. Then:

1) for j > 0, the number f cj of (j − 1)-faces of the simplex disjoint from the
hyperplane L = c, is equal to (

i

j

)
+

(
n− i

j

)
.

Indeed, on one side of the hyperplane there are
(
i
j

)
such faces, and

(
n−i
j

)
such faces

are on the other side;
2) for 0 < k ≤ max(i, (n − i)), twice the number fk−1 of (k − 1)-faces of the

simplex divided by the number f ck−1 satisfies the equality

2fk−1

f ck−1

=

(
n

k

)
2(

i
k

)
+
(
n−i
k

) ;
3) for l, k such that 0 < l < k, the number f cl−1,k−1 of pairs of faces Γ1 ⊂ Γ2

of the simplex, where Γ1 is a face of dimension (l− 1) disjoint from the hyperplane
L = c, and Γ2 is a (k − 1)-face, satisfies the equality

f cl−1,k−1 =

(
n− l

n− k

)((
i

l

)
+

(
n− i

l

))
.

Indeed, the number of (k − 1)-faces of the simplex containing a fixed (l − 1)-face,

is
(
n−l
n−k

)
. It now remains to use the equality from 1);

4) for l,k such that 0 < l < k ≤ max(i, (n − i)), the number f cl−1,k−1 divided
by the number f ck−1 satisfies the equality

f cl−1,k−1

f ck−1

=

(
n− l

n− k

) (
i
l

)
+

(
n−i
l

)(
i
k

)
+
(
n−i
k

) .



14 Askold Khovanskii

Proposition 6.1 a) For 0 < k ≤ (n + 1)/2, the maximal value of the ratio
2fk−1

fc
k−1

for a generic section L = c of the simplex equals to

2
(
n
k

)(
[n/2]
k

)
+

(
[(n+1)/2]

k

) .
b) For 0 < l < k ≤ (n + 1)/2, the maximal value of the ratio

fc
l−1,k−1

fc
k−1

for a

generic section L = c of the simplex equals to(
n− l

n− k

)(
[n/2]

l

)
+

(
[(n+1)/2]

l

)(
[n/2]
k

)
+

(
[(n+1)/2]

k

) .
Indeed, this is readily seen from formulas 2) and 4) for these ratios and from

Lemma 2.4.

Theorem 6.2 (on a geometric meaning of Nikulin’s estimate) For l and k
such that 0 ≤ l < k ≤ (n + 1)/2 and 1 < k, the average number of l-dimensional
faces on k-dimensional faces of a simple n-dimensional polytope ∆ is strictly less
than the maximum over all (n− 1)-dimensional sections of a simplex by a generic
hyperplane L = c:

1) for l = 0: of the ratio 2fk−1

fc
k−1

;

2) for 0 < l: of the ratio
fc
l−1,k−1

fc
k−1

.

Proof This theorem follows from Nikulin’s estimate and Proposition 6.1.

Theorem 6.2 can be proved directly, by translating the proof of Nikulin’s in-
equalities from Section 5 to the language of sections of a simplex. The reason we can
perform this translation is the following. Near each vertex, a simple n-dimensional
polytope looks like a cone over an (n − 1)-dimensional simplex. A level hypersur-
face of a linear function L passing through a vertex of the polytope, gives rise to
a section of this (n − 1)-dimensional simplex. If the index of the function L at
the vertex is i, then i vertices of the simplex lie on one side of this section, and
(n− i) vertices lie on the other side. This observation allows to perform the desired
translation.

Our further plan is as follows. In Section 9, we consider sections of simple
(n− 1)-dimensional polytopes by generic hyperplanes and solve the same problems
for them as those we solved in Proposition 6.1 for a simplex. Then, in Section 10,
we prove generalized Nikulin’s estimates for n-dimensional polytopes simple at the
edges. We will use the fact that a polytope simple at the edges looks like a cone
over some simple (n− 1)-dimensional polytope near every its vertex.

We now proceed to the realization of this plan.

7 An estimate for the number of faces of a section

To estimate the average number of l-dimensional faces on k-dimensional faces
of an n-dimensional polytope, we need to deal with (n− 1)-dimensional polytopes,
with their (l − 1)-dimensional and (k − 1)-dimensional faces and with sections of
these polytopes. To avoid the persisting ”−1” in dimensions of polytopes and their
faces throughout the remaining part of the text, and since the problems on sections
of simple polytopes are interesting on their own right, we change the notation
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for dimensions. We will speak of s-dimensional faces on r-dimensional faces of q-
dimensional polytopes and of hyperplane sections of these q-dimensional polytopes.

Thus let ∆ ⊂ Rq be a simple q-dimensional polytope, and let a hyperplane not
passing through the vertices of the polytope ∆ be fixed. Perturbing the hyperplane
slightly, we can arrange that it will be a level hypersurface L = c of a generic linear
function L on the polytope ∆. Let O and Π be the sets of vertices of the polytope
∆ where the function L is less than c and greater than c, respectively. The set of all
vertices of the polytope is the union of the subsets O and Π, since the hyperplane
does not pass through the vertices of the polytope.

Theorem 7.1 The number f cj of j-dimensional faces of the polytope ∆ disjoint
from the hyperplane L = c, is given by the formula

f cj =
∑
b∈O

(
ind(b)

j

)
+

∑
b∈Π

(
q − ind(b)

j

)
. (2)

Proof The set of j-dimensional faces disjoint from the hyperplane L = c, splits
into two subsets: the subset of faces where the function L is strictly greater than
c, and the subset of faces where the function L is strictly less than c.

The number of faces in the first set equals to the first summand in formula (2)
for f cj . To prove this, we associate each face from this set with the vertex, where
the restriction of the function L to the face attains the maximum (an analogous
argument was used in the proof of Theorem 3.2). Associating the faces from the
second set with the minimum points of the function L, we see that the number of
faces in the second set is equal to the second summand in formula (2). Theorem is
thus proved.

We will need formula (2) in next sections for the proof of generalized Nikulin’s
estimate.

Let us discuss here one interesting corollary of this formula, which is not rel-
evant for this generalization. The corollary allows to give upper bounds for all
components of the h-vector of the section of ∆ by a generic affine plane of codi-
mension l in terms of the h-vector of the polytope ∆. This, in turn, allows to
estimate the numbers of faces of all dimensions of any (not necessarily generic)
affine section of the polytope ∆.

To describe this estimate, we will need the following operation S, taking each
reciprocal polynomial with nonnegative coefficients to a reciprocal polynomial with
nonnegative coefficients, whose degree is one less. By definition, the polynomial
S ◦ pm(t) can be constructed from a polynomial pm(t) of degree m in the following
way: the polynomial S ◦pm(t) is the unique reciprocal polynomial of degree (m−1)
such that for k ≥ (m − 1)/2, its coefficient with the monomial tk coincides with
the coefficient with the monomial tk in the Laurent series for the rational function
pm(t)(t− 1)−1 at ∞.

Theorem 7.2 All coefficients of the h-polynomial of any generic hyperplane
section of a simple polytope ∆ do not exceed the corresponding coefficients of the
polynomial S ◦ h(t), where h(t) is the h-polynomial of the polytope ∆.

Proof Denote by f<c
j and by f>c

j the number of j-dimensional faces of the
polytope ∆, lying beneath and, respectively, above the level hypersurface L = c.
Denote by h<c

j and by h>c
j the number of vertices of index j with respect to the

function L lying beneath the level hypersurface L = c, and, respectively, the number
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of vertices of index (q − j) lying above this hypersurface. Denote by f̃j and h̃j the
j-th components of the f -vector and the h-vector, respectively, of a section of the
polytope ∆.

For each j, we have the obvious relation fj = f<c
j + f̃j−1 + f>c

j . Using these

relations, we can rewrite formula (2) in the form

h(t) = h<c(t) + h̃(t)(t− 1) + h>c(t),

where h(t), h̃(t) are the h-polynomials of the polytope ∆ and of its section, re-
spectively, and h<c(t), h>c(t) are generating polynomials for the sequences h<c

j and

h>c
j .

Identity (2) means that

h̃(t) = (h(t)− h<c(t)− h>c(t))(t− 1)−1. (3)

All coefficients h<c
j , h>c

j of the polynomials h<c(t), h>c(t) are nonnegative. Near

the point ∞, we have (t − 1)−1 = t−1 + t−2 + . . . . Hence identity (3) implies
Theorem 7.2.

Definition 5 A section of a simple q-dimensional polytope by a generic hy-
perplane is said to be successful, if it intersects all faces of dimension > q/2 (or, in
other words, if it intersects all faces of codimension ≤ (q − 1)/2).

From formula (2) it is readily seen that a section L = c is successful if and only
if at all vertices of index < q/2, the values of the function L are less than c, and at
all vertices of index > q/2 the values are greater than c.

Proposition 7.3 The upper bounds for the h-vector components of a generic
hyperplane section of a simple q-dimensional polytope from Theorem 7.2 are simul-
taneously attained if and only if the section is successful.

Indeed, according to formula (3), for all estimates to be simultaneously attained
it is necessary that the polynomials h<c(t) and h>c(t) have degree ≤ q/2. This
happens if and only if the section L = c is successful.

Definition 6 A section of a simple q-dimensional polytope by a generic affine
plane of dimension l is called successful, if it intersects all codimension ≤ l/2 faces
of the polytope.

Theorem 7.4 For any generic l-dimensional affine section of a simple polytope
∆, all coefficients of the h-polynomial of this section do not exceed the corresponding
coefficients of the polynomial S(q−l) ◦ h(t), where h(t) is the h-polynomial of the
polytope ∆ and S(q−l) is the (q − l)-th iteration of the operation S. The upper
bounds for the h-vector components of the section are simultaneously attained if
and only if the section is successful.

Proof The inequalities from Theorem 7.4 follow from Theorem 7.2, since any
section of dimension l can be obtained by taking a hyperplane section, then a
hyperplane section of this section, and so on.

The case when all inequalities turn simultaneously into equalities can be worked
out in the same way as in Proposition 7.3.

From Theorem 7.4 we see how to estimate the f -vector of any generic l-
dimensional section of a simple q-dimensional polytope ∆ in terms of the f -vector
of the polytope.
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Let us construct the f -vector of some abstract simple l-dimensional polytope,
such that the number f̃(l−j) of its faces of dimension (l − j) is equal to f(q−j) for
j ≤ l/2. The numbers of faces of smaller dimensions of such a polytope can be
recovered using the Dehn–Sommerville duality (from the theorem on the h-vector
it is readily seen that there exist simple polytopes with such f -vector.)

Corollary 7.5 For any k, the number of k-faces of a section of the polytope
∆ by a generic affine plane of dimension l does not exceed the component f̃k of the
f -vector thus constructed.

Corollary 7.6 The estimate from Corollary 7.5 holds for a section of the
polytope ∆ by an arbitrary affine plane of dimension l, which can even be non-
generic for the polytope ∆.

Proof Let a simple polytope ∆ be given by linear inequalities 0 ≤ Li, and
suppose that we study a section of the polytope ∆ by an affine plane P of dimension
l. Consider the one-parameter family of polytopes ∆(u), given by the inequalities
0 ≤ Li,u = Li+ ϵi(u), where ϵi(u) are generic linear functions of u that are positive
for u > 0.

For small positive values of u, all polytopes ∆(u) are combinatorially equivalent
and have the same h-vector. If the functions ϵi(u) are generic, then the polytopes
lying in the plane P of codimension l and given there by the inequalities 0 ≤ Li,u

with small positive u are simple. We can apply Corollary 7.5 to those polytopes.
Polytopes P ∩∆(u) corresponding to different small u > 0 have parallel facets, and
they give rise to the same partition ∆∗(u) of the dual space P ∗. The polytopes
∆(u) degenerate to the section ∆ ∩ P for u = 0.

It is clear that for such degeneration, the number of faces in each dimension does
not increase (the partition ∆∗(u) of P ∗ dual to the polytope ∆(u), is a subdivision
of the partition ∆∗

0). The corollary is thus proved.

Problem 7.7 Let the h-vector of a simple q-dimensional polytope be given.
What can be the h-vector of a section of the polytope by a generic affine plane of
dimension l?

Theorem 7.4 gives an upper estimate for the components of the h-vector of the
section. I think that this estimate is sharp but I can not prove this. For a proof,
we need to construct a simple q-dimensional polytope with a given h-vector, such
that there exists a generic affine plane of dimension l, intersecting all faces of the
polytope of codimension ≤ l/2.

Remark 5 According to the famous Upper Bound Conjecture, the l-dimensional
polytope dual to a cyclic polytope with N vertices has the maximal number of faces
in any dimension among all simple l-dimensional polytopes having N facets. This
conjecture is proved (see [18–21]). The estimate from the Upper Bound Theorem
follows from the partial case of Corollary 7.6 when the polytope ∆ is an (N − 1)-
dimensional simplex. The arguments from Section 7 are very close to the arguments
that were used to prove the Upper Bound Conjecture.

8 The ratio of faces disjoint from a section

Let us return to the realization of our plan (see the end of Section 6). Let the
h-vector of some simple q-dimensional polytope be fixed. Consider an arbitrary
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simple polytope ∆ with the given h-vector and fix an arbitrary generic hyperplane
section L = c of this polytope.

Denote by fj , f
c
j the number of j-dimensional faces of the polytope ∆ and,

respectively, the number of j-dimensional faces of the polytope ∆ disjoint from the
hyperplane L = c. We are interested in the following

Problem 8.1 1) Give an upper estimate for the ratio fr/f
c
r with any r, 1 ≤

r ≤ q/2, in terms of the h-vector.
2) Give an upper estimate for the ratio f cs/f

c
r with any s, r, 0 ≤ s < r ≤ q/2

in terms of the h-vector.

To state the results on Problem 8.1, let us introduce the following notation.
For any vector h = (h0, . . . , hq) with positive (not necessarily integer) components
hi and with the symmetry property hi = hq−i, set:

1) Fj(h) =
∑

0≤i≤q

hi
(
i
j

)
;

2) Φj(h) =
∑

0≤i<q/2

2hi
(
i
j

)
+ Qj , where Qj = hq/2

(
q/2
j

)
for even q and Qj = 0

for odd q.

Theorem 8.2 For every generic hyperplane section L = c of a simple q-
dimensional polytope ∆ with the h-vector h, the following inequalities hold:

1) For any r such that 1 ≤ r ≤ q/2,

fr
f cr

≤ Fr(h)

Φr(h)
;

2) For any s, r such that 0 ≤ s < r ≤ q/2,

f cs
f cr

≤ Φs(h)

Φr(h)
.

For a successful section L = c of the polytope ∆, all these inequalities are
equalities.

Conversely, if for at least one r satisfying the conditions of part 1), or for at
least one pair s,r satisfying the conditions of part 2), the inequality turns to equality,
then the section L = c of the polytope ∆ is successful.

Remark 6 For any generic hyperplane section of the polytope ∆ the ratio f0
fc
0

is equal to one, since a generic hyperplane intersects no vertices of the polytope ∆.

The proof of Theorem 8.2 is based on the solution of Problem 8.3, which is
posed below. With a vector h = (h0, . . . , hq) having positive integer components
hi and having the symmetry property hi = hq−i, associate the collection of sets
V0, . . . , Vq containing, respectively, h0, . . . , hq elements. The number of elements in
a finite set A will be denoted by ℵ(A).

Problem 8.3 Find partitions Vi = Oi ∪Πi of sets Vi such that
1) for given r, 1 ≤ r ≤ q/2, the ratio∑

0≤i≤q

hi
(
i
r

)
∑

0≤i≤q

ℵ(Oi)
(
i
r

)
+ ℵ(Πi)

(
q−i
r

)
is maximal;
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2) for given s, r, 0 ≤ s < r ≤ q/2, the ratio∑
0≤i≤q

ℵ(Oi)
(
i
s

)
+ ℵ(Πi)

(
q−i
s

)
∑

0≤i≤q

ℵ(Oi)
(
i
r

)
+ ℵ(Πi)

(
q−i
r

) (4)

is maximal.

Remark 7 The question from part 1) of Problem 8.3 can be posed even for
r = 0. But in this case the ratio does not depend on the choice of a partition and
is identically equal to 1.

A collection of partitions Vi = Oi ∪Πi of sets Vi is called successful, if:
1) for i < q/2, the sets Oi and Vi coincide, and the set Πi is empty,
2) for i > q/2, the set Oi is empty, and the sets Πi and Vi coincide,
3) for i = q/2, the partition of the set Vi into subsets Oi and Πi is arbitrary.
The following theorem provides a complete solution of Problem 8.3.

Theorem 8.4 1) A successful collection of partitions of the sets V0, . . . , Vm
maximizes the ratio from part 1) for any r. The desired maximum is Fr(h)

Φr(h)
.

2) A successful collection of partitions of the sets V0, . . . , Vm maximizes the

ratio from part 2) for any s and r. The desired maximum is Φs(h)
Φr(h)

.

3) If partitions Vi = Oi ∪Πi of the sets Vi maximize the ratio from part 1) for
some r or maximize the ratio from part 2) for some s and r, then this collection of
partitions is successful.

Let us deduce Theorem 8.2 from Theorem 8.4. A generic linear function L
defines a partition of the set V of vertices of the polytope ∆ into subsets V0, . . . , Vq:
the subset Vi contains hi elements and is defined as the set of vertices having index
i with respect to the function L. By fixing a level L = c, we partition each set Vi
into subsets Oi and Πi, consisting of vertices where L < c and, respectively, L > c.

To deduce Theorem 8.2 from Theorem 8.4, it now suffices to compare formula
(2) from Theorem 7.1 with Problem 8.3.

First part of Problem 8.3 is very simple. The following lemma is obvious:

Lemma 8.5 The following value∑
0≤i≤q

ℵ(Oi)

(
i

r

)
+ ℵ(Πi)

(
q − i

r

)
attains the minimum on successful partitions and only on them.

According to Lemma 8.5, successful partitions and only them give a solution
for part 1) of Problem 8.3.

For the proof of remaining parts of Theorem 8.4 it is convenient to use the
fractional linear programming. Fractional linear programming is the maximizing of
the ratio L1/L2 of two linear functions on a convex polytope (it is assumed that the
function L2 vanishes nowhere on the polytope). Fractional linear programming is
not very different from linear programming. Indeed, consider an arbitrary projective
transformation of the space RP q ⊃ Rq mapping the hyperplane L2 = 0 to the
hyperplane at infinity. The convex polytope gets transformed into another convex
polytope, and the fractional linear function L1/L2 becomes linear. Thus the original
problem transforms to a problem of linear programming.
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Hence the set of points where the maximum of a fractional linear function is
attained, is a face of the polytope. (In particular, the maximum is attained at a
vertex of the polytope. Lemma 2.1 from Section 2 is based on this fact.) In the
case of general position, this face is necessarily a vertex of the polytope.

Let us formulate a continuous variant of part 2) of Problem 8.3. Let h =
(h0, . . . , hq) be a vector with positive (not necessarily integer) components hi, and
with the symmetry property hi = hq−i. Consider the parallelepiped ∆ in the space

R[(q+1)/2], defined by the inequalities 0 ≤ xi ≤ 2hi for 0 ≤ i < q/2 (the number
[(q + 1)/2] is the number of indices i satisfying the inequalities 0 ≤ i < q/2). For
each integer j, define a linear function on R[(q+1)/2] by the formula

Lj =
∑

0≤i<q/2

(xi

(
i

j

)
+ (2hi − xi)

(
q − i

j

)
) +Qj ,

where Qj = hq/2
(
q/2
j

)
for even q and Qj = 0 for odd q;

Consider the following problem of fractional linear programming.

Problem 8.6 Maximize the function Ls/Lr on the parallelepiped ∆, where
s, r are fixed numbers satisfying the inequalities 0 ≤ s < r ≤ q/2.

Theorem 8.7 For any s, r satisfying the conditions of Problem 8.6, the strict
maximum of the function Ls/Lr is attained at the vertex Γ of the parallelepiped
such that its i-th coordinate xi is 2hi for 0 ≤ i < q/2. This maximum Ls(Γ)/Lr(Γ)
is equal to Φs(h)/Φr(h).

Theorem 8.7 allows to conclude the proof of Theorem 8.4 started in Lemma
8.3. For a fixed collection of partitions V0 = O0 ∪ Π0, . . . , Vq = Oq ∪ Πq and for
each 0 ≤ i < q/2, set xi = χ(Oi) + χ(Πq−i). Then the value Ls(x)/Lr(x) at the

point x, where x ∈ R[(q+1)/2] is a vector with coordinates xi, equals to the value of
ratio (4) for the given collection of partitions of the sets Vi.

Furthermore, xi = 2hi if and only if χ(Oi) = hi and χ(Πq−i) = hi. Hence,
after we prove Theorem 8.7, Theorem 8.4 will be proved completely.

The proof of Theorem 8.7 uses the following property of binomial coefficients.

Lemma 8.8 Suppose that s < r. Then the ratio ψ(m) =
(
m
s

)
/
(
m
r

)
strictly

decreases as m runs from r to ∞, and the ratio φ(m) =
(
r
m

)
/
(
s
m

)
strictly increases

as m runs from 0 to s.

Indeed, the denominator of the ratio

ψ(m) = (r!/s!)(1/(m− s)(m− s− 1) . . . (m− r + 1)

increases as m increases, and the numerator of the ratio

φ(m) = (r!/s)!(s−m) . . . (r −m+ 1)

increases as m increases.

Proof of Theorem 8.7.
Step 1. The value Ls(Γ)/Lr(Γ) at the vertex Γ is bigger than

(
[q/2]
s

)
/
(
[q/2]
r

)
.

Indeed, Ls(Γ)/Lr(Γ) > Ls,r(Γ)/Lr(Γ), where

Ls,r(Γ) =
∑

r≤i<q/2

2hi

(
i

s

)
+Qs.
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According to Lemma 8.8 applied to the function ψ(m), the numbers
(
i
s

)
/
(
i
r

)
increase

as i increases from i = r. To complete step 1, it remains to use Lemma 2.1 (it is
applicable, since the numbers hi are strictly positive for r ≤ i ≤ [n/2]).

Step 2. The value Ls(V )/Lr(V ) at any vertex V adjacent to the vertex Γ
(i.e. at a vertex V that is connected with Γ by an edge), is strictly less than the
corresponding value at the vertex Γ. Indeed, all coordinates of the vertex V , except
only one, coincide with coordinates of the vertex Γ. Let the index of this special
coordinate be i. If the vertex Γ gets replaced with the vertex V , then the value
of the function Ls increases by 2hiB, where B =

(
q−i
s

)
−

(
i
s

)
, and the value of the

function Lr increases by the number 2hiA, where A =
(
q−i
r

)
−

(
i
r

)
. By Step 1, the

number
(
[q/2]
s

)
/
(
[q/2]
r

)
is at most Ls(Γ)/Lr(Γ).

Let us show that B/A <
(
[q/2]
s

)
/
(
[q/2]
r

)
. The inequality B/

(
[q/2]
s

)
< A/

(
[q/2]
r

)
follows from Lemma 8.8 applied to the function φ(m). Indeed,

(
q−i
s

)
/
(
[q/2]
s

)
<(

q−i
r

)
/
(
[q/2]
r

)
, since (q − i) > [q/2] and s < r. Furthermore,

−
(
i
s

)(
[q/2]
s

) ≤ −
(
i
r

)(
[q/2]
r

)
(For i < r and for i = [q/2], this inequality turns to equality. For r ≤ i < [q/2]

and s < r, this inequality is strict and is equivalent to the relation
(
[q/2]
s

)
/
(
i
s

)
<(

[q/2]
r

)
/
(
i
r

)
, which also follows from Lemma 8.8 applied to the function φ(m).)

Summing up the two obtained inequalities, we arrive at the desired result.
Step 3. Fractional linear programming and the result of Step 2 prove that the

function Ls/Lr attains its maximum at the vertex Γ. Theorem 8.7, together with
Theorem 8.4 and 8.2, is proved.

9 Extremal property of sections of a simplex

In the statement of Theorem 9.1, which is the central result of this section, we
use the notation introduced in Section 8.

Theorem 9.1 For every generic hyperplane section L = c of a simple q-
dimensional polytope ∆, the following inequalities hold, which turn to equalities for
a successful section of a q-dimensional simplex:

1) For 1 ≤ r ≤ q/2,

fr
f cr

≤
(
q+1
r+1

)(
[(q+1)/2]

r+1

)
+
(
[(q+2)/2]

r+1

) ;
2) For 0 ≤ s < r ≤ q/2,

f cs
f cr

≤
(
[(q+1)/2]

s+1

)
+
(
[(q+2)/2]

s+1

)(
[(q+1)/2]

r+1

)
+
(
[(q+2)/2]

r+1

) .
If for at least one r from the inequality of part 1) we have the equality, then

the polytope ∆ is a simplex, and its section L = c is successful. If for some pair s,
r the inequality from part 2) is the equality, then the components hi of the h-vector
of the polytope ∆ are equal to each other for s ≤ i ≤ (q− s), and the section L = c
of the polytope ∆ is successful.

In the proof of Theorem 9.1, we will use the fact that the h-vector of a simple
polytope is unimodal (see Section 3). This is a part of the theorem on the h-vector.
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Remark 8 For some simple polytopes, the unimodality of the h-vector is
obvious, and does not require the use of the theorem on the h-vector. For example,
the h-vector of a direct product of simplices possesses this property, since the h-
polynomial of the direct product of polytopes is the product of their h-polynomials.
This fact, together with the theorem on reduction from Section 10, proves Nikulin’s
estimate for almost simple polytopes (i.e. it proves Corollary 0.4) without using
the theorem on the h-vector.

We will need Problem 9.2 posed below. A solution to this problem is given by
Theorem 9.3, which implies Theorem 9.1 immediately. Consider the set of vectors
h = (h0, . . . , hq) such that the components hi of these vectors are:

1) positive,
2) symmetric, i.e. hi = hq−i,
3) unimodal, i.e. 0 ≤ h0 ≤ · · · ≤ h[q/2].
By the symmetry condition, a vector h is determined by its components h0, . . . , h[q/2],

the number of which is [q/2] + 1. Consider a simplex ∆ in R[q/2]+1 defined by the
inequalities 0 ≤ h0 ≤ · · · ≤ h[q/2] and the equation h0 + · · ·+ h[q/2] = v, where v is
an arbitrary positive number.

Problem 9.2 Maximize on the simplex ∆:

1) for 1 ≤ r ≤ q/2, the function Fr(h)
Φr(h)

,

2) for 0 ≤ s < r ≤ q/2, the function Φs(h)
Φr(h)

.

First note that the maximum in Problem 9.2 does not depend on the choice
of constant v, since the functions we maximize are homogeneous of degree 0. A
complete answer to this problem is given by the following

Theorem 9.3 1) For 1 ≤ r ≤ q/2, the maximum of the function Fr(h)
Φr(h)

is

attained for h0 > 0, h0 = · · · = h[q/2], and is equal to(
q+1
r+1

)(
[(q+1)/2]

r+1

)
+
(
[(q+2)/2]

r+1

) .
2) For 0 ≤ s < r ≤ q/2, the maximum of the function Φs(h)

Φr(h)
is attained for

h0 + · · ·+ hs > 0, hs = · · · = h[q/2], and is equal to(
[(q+1)/2]

s+1

)
+
(
[(q+2)/2]

s+1

)(
[(q+1)/2]

r+1

)
+
(
[(q+2)/2]

r+1

) .
Let us deduce Theorem 9.1 from Theorem 9.3. According to Theorem 8.2,

for a fixed h-vector h of the polytope ∆, the ratios fr
fc
r
and

fc
s

fc
r
do not exceed the

ratios Fr(h)
Φr(h)

and Φs(h)
Φr(h)

, and the equality is attained for successful sections only. To

conclude the deduction of Theorem 9.1 from Theorem 9.3, it remains to note that
a q-dimensional simplex is the only simple polytope such that all components of its
h-vector are equal. Indeed, since h0 = 1, all components of the h-vector must be
equal to 1. It follows that fq = q + 1, i.e. that the polytope is a simplex.

For the proof of Theorem 9.3, we will need simple Lemmas 9.4 and 9.5 on sums
of binomial coefficients. We will also use classical Abel’s lemma, which is a discrete
variant of the integration by parts, together with its application to the functions we
maximize (Lemma 9.6). Finally, we will need a simple general fact from fractional
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linear programming (Lemma 9.7) and two simple lemmas dealing with the functions
we maximize (Lemmas 9.8 and 9.9).

Lemma 9.4 (on a sum of binomial coefficients) The following formula holds:∑
i≤j≤k

(
j

m

)
=

(
k + 1

m+ 1

)
−
(
k + 1

j + 1

)
.

Proof Computing the sum of a geometric series, we obtain the identity∑
i≤j≤k

(1 + t)j = ((1 + t)k+1 − (1 + t)i+1)/t.

Equating the coefficients with tm in this identity, we obtain the required equality.

Lemma 9.5 The following formula holds:∑
i≤k≤(q−i)

(
min(k, q − k)

r

)
=

(
[(q + 1)/2]

r + 1

)
+

(
[(q + 2)/2]

r + 1

)
− 2

(
i+ 1

r + 1

)
.

Proof The desired sum can be rewritten in the form∑
i≤k≤[(q−1)/2]

(
k

r

)
+

∑
i≤k≤[q/2]

(
k

r

)
.

Applying the previous lemma to each sum, we obtain the required equality.
To make the use of the unimodality condition for the h-vector simpler, let

us transform the functions we maximize. Recall the following discrete variant of
the integration by parts. For every sequence a0, . . . , an, define sequences (∆a)i and
(Sa)i, where (∆a)i = ai−ai−1 for 0 < i ≤ n, and (∆a)0 = a0, and (Sa)ni =

∑
i≤j≤n

aj

for 0 ≤ i ≤ n.

Abel’s lemma For any pair of sequences a0, . . . , an and b0, . . . , bn, the follow-
ing equality holds: ∑

0≤i≤n

aibi =
∑

0≤i≤n

(∆a)i(Sb)
n
i .

Lemma 9.6 We have the following equalities:
1) Fj(h) =

∑
0≤i≤[q/2]

(∆h)i
∑

i≤k≤q−i

(
k
j

)
;

2) Φj(h) =
∑

0≤i≤[q/2]

(∆h)i
∑

i≤k≤(q−i)

(
min(k,q−k)

j

)
.

This follows from the Abel lemma for n = [q/2] and the sequence ai = hi.
The sequence bi for the function Fj(h) is defined by the following relations: bi =(
i
j

)
+

(
q−i
j

)
for i < q/2, and bq/2 =

(
q/2
j

)
for even q, and for the function Φ(h) by

the relations: bi = 2
(
i
j

)
for i < q/2, and bq/2 =

(
q/2
j

)
for even q.

Lemma 9.7 Let all components of the vectors A = (A1, . . . , An) and B =
(B1, . . . , Bn) be strictly positive and B1

A1
> · · · > Bn

An
. Then the numbers

Di =

∑
i≤j≤n

Bj∑
i≤j≤n

Aj
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satisfy the inequalities B1

A1
> D1 > · · · > Dn = Bn

An
.

Proof Suppose that for some i > 1 we proved that Bi

Ai
≥ Di. Then, by Lemma

2.1,

Di−1 =

Bi−1 + (
∑

i≤j≤n

Bi)

Ai−1 + (
∑

i≤j≤n

Ai)

is strictly bigger than Di and strictly smaller than Bi−1

Ai−1
. The lemma is thus proved.

Lemma 9.8 1) For 1 ≤ r ≤ q/2, the numbers

Di =

∑
i≤k≤q−i

(
k
r

)
∑

i≤k≤(q−i)

(
min(k,q−k)

r

)
strictly decrease as i runs from 0 to [q/2].

2) We have

max
0≤i≤[q/2]

Di = D0 =

(
q+1
r+1

)(
[(q+1)/2]

r+1

)
+
(
[(q+2)/2]

r+1

) . (5)

Proof 1) The numbers
(ir)+(

n−i
r )

2(ir)
strictly decrease as i increases on the semi-

segment r ≤ i < q/2. Moreover, for even q, all these numbers are bigger than
(q/2r )
(q/2r )

= 1. It now remains to use Lemma 9.7.

2) The numbers Di strictly decrease as i increases on the segment 0 ≤ i ≤ r.
Indeed, as i increases, the numerator∑

i≤k≤q−i

(
k

r

)
=

∑
r≤k≤q−i

(
k

r

)
strictly decreases, whereas the denominator∑

i≤k≤(q−i)

(
min(k, q − k)

r

)
=

∑
r≤k≤(q−r)

(
min(k, q − k)

r

)
remains unchanged. Formula (5) for the number D0 follows from Lemmas 9.4 and
9.5. The lemma is thus proved.

Lemma 9.9 For 0 ≤ s < r ≤ q/2,
1) the numbers

Di =

∑
i≤k≤(q−i)

(
min(k,q−k)

s

)
∑

i≤k≤(q−i)

(
min(k,q−k)

r

)
strictly decrease as i runs from s to [q/2],

2) we have

max
0≤i≤[q/2]

Di = D0 = · · · = Ds =

(
[(q+1)/2]

s+1

)
+
(
[(q+2)/2]

s+1

)(
[(q+1)/2]

r+1

)
+
(
[(q+2)/2]

r+1

) . (6)
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Proof 1) For r ≤ j < q/2, the number
(
j
s

)
enters the numerator exactly twice:

for k = j and for k = q − j. Analogously, the number
(
j
r

)
enters the denominator

exactly twice. If q is even, then
(
q/2
s

)
and, respectively,

(
q/2
r

)
appear once in the

numerator and, respectively, in the denominator.

The numbers
2(js)
2(jr)

strictly decrease as j increases on the semi-interval r ≤ j <

q/2, moreover, for even q, all these numbers are bigger than
(q/2s )
(q/2r )

(see Lemma 8.7

for function ψ(m)). It now remains to use Lemma 9.7. The numbers Di strictly
decrease as i increases on the segment s ≤ i ≤ r. Indeed, as i increases, the
numerator ∑

i≤k≤(q−i)

(
min(k, q − k)

s

)
strictly decreases, whereas the denominator∑

i≤k≤(q−i)

(
min(k, q − k)

r

)
=

∑
r≤k≤(q−r)

(
min(k, q − k)

r

)
remains unchanged.

2) It is readily seen that

D0 = · · · = Ds =

∑
s≤k≤(q−s)

(
min(k,q−k)

s

)
∑

r≤k≤(q−r)

(
min(k,q−k)

r

) .
Formula (6) for numbers D0 = · · · = Ds follows from Lemma 9.4. Part 1) shows
that this formula gives the maximal value of the numbers Di. The lemma is thus
proved.

We are now ready to prove Theorem 9.3.

Proof of Theorem 9.3 1) According to Lemma 9.6, the function we maximize
can be written in the form

Fr(h)

Φr(h)
=

∑
0≤i≤[q/2]

(∆h)i
∑

i≤k≤q−i

(
k
r

)
∑

0≤i≤[q/2]

(∆h)i
∑

i≤k≤(q−i)

(
min(k,q−k)

r

) .
On the simplex under consideration, all numbers (∆h)i are nonnegative. Using
Lemma 9.8 and Lemma 9.7, we see that the maximum of the function is attained
for (∆h)0 > 0, (∆h)1 = · · · = (∆h)[q/2] = 0. This means that the maximum is
equal to D0 and is attained for h0 > 0, h0 = · · · = hq.

2) According to Lemma 9.6, the function we maximize can be written in the
form

Φs(h)

Φr(h)
=

∑
0≤i≤[q/2]

(∆h)i
∑

i≤k≤(q−i)

(
min(k,q−k

s

)
∑

0≤i≤[q/2]

(∆h)i
∑

i≤k≤(q−i)

(
min(k,q−k)

r

) .
On the simplex under consideration, all numbers (∆h)i are nonnegative. Using
Lemma 9.9 and Lemma 9.7, we obtain that the maximum of the function is attained
for (∆h)0 + · · · + (∆h)s > 0, (∆h)s+1 = · · · = (∆h)[q/2] = 0. This means that the
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maximum is equal to D0 = · · · = Ds and is attained for 0 ≤ hs,hs = · · · = hq−s.
Theorem 9.3 and Theorem 9.1 are thus proved.

10 A generalization of Nikulin’s Theorem

The problem of estimating the average number of l-dimensional faces on k-
dimensional faces of a convex n-dimensional polytope, not necessarily simple, can
be reduced to a series of problems on a possible mutual disposition of an (n − 1)-
dimensional convex polytope and a hyperplane. For such reduction, we need to
consider a generic linear function on the polytope and, in the spirit of Morse theory,
to study the level hypersurfaces of this linear function passing through vertices of
the polytope.

Let ∆ be a convex n-dimensional polytope, not necessarily simple. Denote by
fl,k the number of all pairs consisting of an l-dimensional face of the polytope ∆ and
a k-dimensional face containing it. The average number of l-dimensional faces on
k-dimensional faces of the polytope ∆ is the ratio fl,k/fk, where fk is the number
of k-dimensional faces of the polytope. Let us show how to reduce the problem of
estimating this number to an (n− 1)-dimensional problem.

Fix a generic linear function L. With each vertex A of the polytope ∆, associate
the pair consisting of a polytope ∆(A) and its hyperplane section LA. This pair is
defined up to a projective transformation. Here is the definition of this pair. Near
each vertex A, the polytope ∆ looks like a convex n-dimensional cone. This cone
is sectioned by the hyperplane defined by the equation L(x) = L(A). The pair
∆(A), LA is defined as the projectivization of the pair consisting of the cone and
the hyperplane described above.

In the theorem on reduction stated below, we will also assume that the polytope
∆ is simple at the edges. The theorem is valid even without this assumption.
However, it helps to shorten the proof, and in the sequel we will not need polytopes
that are not simple at the edges.

Denote by fk(∆(A)) the number of all k-dimensional faces of the polytope
∆(A), by fk(∆(A), LA) the number of all k-dimensional faces of the polytope ∆(A)
disjoint from the hyperplane LA, and by fl,k(∆(A), LA) the number of all pairs
consisting of an l-dimensional face of the polytope ∆(A) disjoint from the hyper-
plane LA and any k-dimensional face containing it. The set of all vertices of the
polytope ∆ will be denoted by V .

Theorem on reduction Let ∆ be a polytope simple at the edges, and L a
generic linear function on it. Then we have the following inequalities:

1. for 1 < k ≤ (n+ 1)/2,

f0,k
fk

≤ max
A∈V

2fk−1(∆(A))

fk−1(∆(A), LA)
,

2. for 0 < l < k ≤ (n+ 1)/2,

fl,k
fk

≤ max
A∈V

fl−1,k−1(∆(A), LA)

fk−1(∆(A), LA)
.

Proof 1) The numerator f0,k, as well as the denominator fk, of the ratio
f0,k/fk are representable as sums of nonnegative numbers over the vertices of the
polytope ∆. To this end, to each pair Γ0 ∈ Γk consisting of a vertex Γ0 and a k-
dimensional face Γk containing it, assign the vertex Γ0. To each k-dimensional face
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Γk assign the two vertices, where the function L restricted to the face Γk attains
its maximum and minimum.

Summing up the associated objects over the vertices, we obtain :

f0,k =
∑
A∈V

fk−1(∆(A)),

fk =
∑
A∈V

1

2
fk−1(∆(A), LA).

The number fk−1(∆(A), LA) is strictly positive for each vertex A, since for k ≤
(n+ 1)/2, a generic hyperplane does not intersect at least one (k − 1)-dimensional
face of the n-dimensional polytope ∆(A) (see Corollary 4.5). To conclude the proof
of part 1), it suffices to use Lemma 2.1.

2) Analogously to part 1), the numerator fl,k, as well as the denominator fk, of
the ratio fl,k/fk are representable as sums of nonnegative numbers over the vertices
of the polytope ∆. To this end, with each pair Γl ⊂ Γk consisting of a face Γl and
a k-dimensional face Γk containing it, associate two vertices, where the function
L restricted to the face Γl attains the maximum and the minimum. With each
k-dimensional face Γk, associate two vertices, where the function L restricted to
the face Γk attains the maximum and the minimum. Summing up the associated
objects over all vertices, we obtain:

fl,k =
∑
A∈V

1

2
fl−1,k−1(∆(A), LA),

fk =
∑
A∈V

1

2
fk−1(∆(A), LA).

To conclude the proof of part 2), it suffices to use Lemma 2.1.

We are now ready to prove the central result of the article, which generalizes
Nikulin’s estimate to the case of polytopes simple at the edges.

Theorem The average number of l-dimensional faces on k-dimensional faces
of an n-dimensional polytope simple at the edges is strictly less than(

n− l

n− k

)(
[n/2]

l

)
+

(
[(n+1)/2]

l

)(
[n/2]
k

)
+

(
[(n+1)/2]

k

) .
for 0 ≤ l < k ≤ (n+ 1)/2, 1 < k.

Proof A slightly weaker result, where the strict inequalities are replaced with
non-strict inequalities, is a direct corollary of the theorem on reduction and Theo-

rem 9.4, which allows to estimate the numbers fk−1(∆(A))
fk−1(∆(A),LA) and

fl−1,k−1(∆(A),LA)
fk−1(∆(A),LA) .

It remains to explain why the inequalities are strict. The point is that among
the vertices of the polytope ∆ there are two vertices, where the function L attains
the maximal and the minimal values. Sections LA of polytopes ∆(A) are certainly
not successful for these vertices, since the hyperplane LA does not intersect the
polytope ∆(A). Hence the ratios from Theorem 9.4 are certainly not extremal for
these vertices. Adding this remark to the proof of the theorem on reduction, we
obtain that all inequalities are in fact strict.
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To conclude, let us revisit classical Theorem 1.1, according to which the average
number of edges on faces of a 3-polytope is strictly less than 6. The theorem on
reduction reduces the problem of estimating this number to the following simple
two-dimensional problem: estimate from above the ratio of the number of pairs
consisting of a vertex of a polygon and an edge containing this vertex, to the
number of edges of the polygon disjoint from a generic line.

If the polygon has m edges, then the number of pairs is 2m, and the number of
edges disjoint from a generic line ism, if the line does not intersect the polygon, and
is (m−2) in the opposite case. The desired ratio is either 2m/m = 2 or 2m/(m−2).
Since the number of edges of a polygon is at least three, the ratio does not exceed 6,
which proves Theorem 1.1 (note that in accordance with Theorem 9.1, the maximal
value of the desired ratio is attained in the case of triangle intersected by the line).
The argument just given does not even use the Euler formula and is most likely the
simplest proof of Theorem 1.1.
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